Prediction of Outlet Pressure for the Sulfur Dioxide Blower Based on Conv1D-BiGRU Model and Genetic Algorithm

Author:

Li Xiaoli123ORCID,Xu Chengzhong12ORCID,Wang Kang1ORCID,Liu Zhiqiang4ORCID,Li Guihai5ORCID

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing University of Technology, Beijing 100124, China

3. Engineering Research Center of Digital Community, Beijing University of Technology, Beijing 100124, China

4. Guixi Smelter, Jiangxi Copper Corporation Limited, Guixi, Jiangxi 335400, China

5. Beijing RTlink Technology Co. Ltd., Beijing 100024, China

Abstract

The sulfur dioxide blower is a centrifugal blower that transports various gases in the process of acid production with flue gas. Accurate prediction of the outlet pressure of the sulfur dioxide blower is quite significant for the process of acid production with flue gas. Due to the internal structure of the sulfur dioxide blower being complex, its mechanism model is difficult to establish. A novel method combining one-dimensional convolution (Conv1D) and bidirectional gated recurrent unit (BiGRU) is proposed for short-term prediction of the outlet pressure of sulfur dioxide blower. Considering the external factors such as inlet pressure and inlet flow rate of the blower, the proposed method first uses Conv1D to extract periodic and local correlation features of these external factors and the blower’s outlet pressure data. Then, BiGRU is used to overcome the complexity and nonlinearity in prediction. More importantly, genetic algorithm (GA) is used to optimize the important hyperparameters of the model. Experimental results show that the combined model of Conv1D and BiGRU optimized by GA can predict the outlet pressure of sulfur dioxide blower accurately in the short term, in which the root mean square error (RMSE) is 0.504, the mean absolute error (MAE) is 0.406, and R-square (R2) is 0.993. Also, the proposed method is superior to LSTM, GRU, BiLSTM, BiGRU, and Conv1D-BiLSTM.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3