Adsorption of 3-Chloroaniline on Potato Skin in Aqueous Solution

Author:

Mohammed Nidhal S.1ORCID,Flowers T. H.2ORCID,Duncan H. J.2

Affiliation:

1. School of Chemistry, University of Zakho, Zakho, Kurdistan Region, Iraq

2. School of Chemistry, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK

Abstract

The adsorption behaviour of aromatic amine 3-chloroaniline (3-CA) from aqueous solution on fresh potato skin was investigated. A series of batch experiments were conducted under different experimental conditions of contact time, 3-chloroaniline concentration, weight of potato skin, pH, temperature, and ionic strength using RP-HPLC analysis. Adsorption equilibrium of 3-chloroaniline at concentration of 10 µg/mL on 1 g weight of chopped potato skin was achieved in 24 hours. Using different varieties of potato skin showed that the adsorption of 3-CA on Nicola variety is higher compared to Sante and Maris Peer varieties. Adsorption on potato skin was found to be generally higher compared to cortex and pith tissues. Analysis of adsorption isotherm shows that equilibrium data was fitted to Freundlich model (R2=0.977). Maximum adsorption capacities of 3-chloroaniline were found in the pH range from 3 to 9, whereas low adsorption quantities were found in high acidic and high basic solutions (pH 2 and pH 13, resp.). Adsorption capacity increased with an increase in temperature from 4°C to 30°C but decreased with further increase of temperature to 40°C. Testing the ionic strength showed that increasing the concentration of electrolyte reduces the adsorption efficiency. This study indicated that the fresh potato skin (without any treatment) is possible to use as a new adsorbent for removal of 3-chloroaniline from industrial waste water.

Funder

University of Glasgow

Publisher

Hindawi Limited

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3