Affiliation:
1. College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
2. College of Science, Yanshan University, Qinhuangdao 066001, China
Abstract
The exponential stability issue for a class of stochastic neural networks (SNNs) with Markovian jump parameters, mixed time delays, andα-inverse Hölder activation functions is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. Firstly, based on Brouwer degree properties, the existence and uniqueness of the equilibrium point for SNNs without noise perturbations are proved. Secondly, by applying the Lyapunov-Krasovskii functional approach, stochastic analysis theory, and linear matrix inequality (LMI) technique, new delay-dependent sufficient criteria are achieved in terms of LMIs to ensure the SNNs with noise perturbations to be globally exponentially stable in the mean square. Finally, two simulation examples are provided to demonstrate the validity of the theoretical results.
Funder
National Science and Technology Major Project of China
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献