Affiliation:
1. Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, Mexico
Abstract
The serine protease thrombin activates Protease-Activated Receptors (PARs), a family of G-protein-coupled receptors (GPCRs) activated by the proteolytic cleavage of their extracellular N-terminal domain. Four members of this family have been identified: PAR1–4. The activation of Protease-Activated Receptor 1(PAR1), the prototype of this receptor family, leads to an increase in intracellular Ca+2concentration ([Ca+2]i) mediated byGq11αcoupling and phospholipase C (PLC) activation. We have previously shown that the stimulation of PAR1 by thrombin promotes intracellular signaling leading to RPE cell transformation, proliferation, and migration which characterize fibroproliferative eye diseases leading to blindness. Within this context, the elucidation of the mechanisms involved in PAR1 inactivation is of utmost importance. Due to the irreversible nature of PAR1 activation, its inactivation must be efficiently regulated in order to terminate signaling. Using ARPE-19 human RPE cell line, we characterized thrombin-induced [Ca+2]i increase and demonstrated the calcium-dependent activation ofμ-calpain mediated by PAR1. Calpains are a family of calcium-activated cysteine proteases involved in multiple cellular processes including the internalization of membrane proteins through clathrin-coated vesicles. We demonstrated that PAR1-induced calpain activation results in the degradation ofα-spectrin by calpain, essential for receptor endocytosis, and the consequent decrease in PAR1 membrane expression. Collectively, the present results identify a novelμ-calpain-dependent mechanism for PAR1 inactivation following exposure to thrombin.
Funder
Consejo Nacional de Ciencia y Tecnología
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献