Affiliation:
1. Science and Technology on Combustion Internal Flow and Thermal-structure Laboratory, School of Astronautics, Northwestern Polytechnical University, Xi’an 710072, China
Abstract
With a purpose to evolve the surfaces of complex geometries in their normal direction at arbitrarily defined velocities, we have developed a robust level-set approach which runs on three-dimensional unstructured meshes. The approach is built on the basis of an innovative spatial discretization and corresponding gradient-estimating approach. The numerical consistency of the estimating method is mathematically proven. A correction technology is utilized to improve accuracy near sharp geometric features. Validation tests show that the proposed approach is able to accurately handle geometries containing sharp features, computation regions having irregular shapes, discontinuous speed fields, and topological changes. Results of the test problems fit well with the reference results produced by analytical or other numerical methods and converge to reference results as the meshes refine. Compared to level-set method implementations on Cartesian meshes, the proposed approach makes it easier to describe jump boundary conditions and to perform coupling simulations.
Subject
General Engineering,General Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献