Affiliation:
1. School of Mathematics, Statistics & Computer Science, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
Abstract
This paper experimentally investigates the effect of nine chaotic maps on the performance of two Particle Swarm Optimization (PSO) variants, namely, Random Inertia Weight PSO (RIW-PSO) and Linear Decreasing Inertia Weight PSO (LDIW-PSO) algorithms. The applications of logistic chaotic map by researchers to these variants have led to Chaotic Random Inertia Weight PSO (CRIW-PSO) and Chaotic Linear Decreasing Inertia Weight PSO (CDIW-PSO) with improved optimizing capability due to better global search mobility. However, there are many other chaotic maps in literature which could perhaps enhance the performances of RIW-PSO and LDIW-PSO more than logistic map. Some benchmark mathematical problems well-studied in literature were used to verify the performances of RIW-PSO and LDIW-PSO variants using the nine chaotic maps in comparison with logistic chaotic map. Results show that the performances of these two variants were improved more by many of the chaotic maps than by logistic map in many of the test problems. The best performance, in terms of function evaluations, was obtained by the two variants using Intermittency chaotic map. Results in this paper provide a platform for informative decision making when selecting chaotic maps to be used in the inertia weight formula of LDIW-PSO and RIW-PSO.
Subject
General Engineering,General Mathematics
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献