Design and Implementation of an Underwater Information Acquisition System Prototype Based on Optical Fiber Communication

Author:

Zhao Mengke1ORCID,Hao Yi1ORCID,Lu Chunqiang1ORCID,Li Suyi1ORCID

Affiliation:

1. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130026, China

Abstract

Ocean observation plays an important role in many areas, such as marine scientific research, environmental expedition, and resource exploitation. Traditional observation generally acquires periodical marine information and lacks real-time performances. To realize underwater observation of multi-information in real-time, an information acquisition system is designed in this study based on optical fiber communication. A multichannel interface between the diverse sensors and the slave computer is designed. It shields discrepancies of different sensor data and allows collecting information of various types, including conductivity, temperature, depth (CTD), attitudes, and images. At the same time, the full communication link is designed by constructing an optical fiber channel in collaboration with RS485 and USB. It provides a higher-rate link for real-time data transmission from underwater to overwater. Then, software procedures are, respectively, developed for the slave computer and the master computer based on the designed communication protocol. Additionally, a PC-based user interface is designed to realize data receipt, file saving, information display, and image restoration. Finally, an acquisition prototype is developed, and an underwater experiment is conducted to evaluate its performance. The results show that the underwater CTD, attitudes, and images can be collected and transmitted in real time. From its higher transmission rate and lower packet loss rate, the accuracy and the stability of the prototype are verified. The implementation of the acquisition prototype follows the trends of laying and networking submarine optical fiber cables. Therefore, its application can be expanded for ocean observation in information collecting, transmitting, and processing.

Funder

National College Students’ Innovation and Entrepreneurship Training Program

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Media Technology,Communication

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3