Optimization of Thumb Prosthesis Design by Using Five Performance Criteria

Author:

Tsamo Nestor12ORCID,Tcheukam Toko Denis2,Talla Pierre Kisito1ORCID

Affiliation:

1. Laboratory of Mechanics and Modelling of Physical Systems (L2MPS), Department of Physics, Faculty of Science, University of Dschang, P. O. Box: 67, Dschang, Cameroon

2. Mechanical Engineering Department, College of Technology, University of Buea, P.O. Box 63 Buea, Cameroon

Abstract

The thumb prosthesis mechanism is optimally designed by using five performance criteria including the following: least square structural error, mechanical manufacturing imprecision error, driving optimal torque, mechanical strength reliability, and production cost of the thumb mechanism. This paper was devoted to the optimization of the thumb prosthesis’s mechanism by taking into consideration the manufacturing cost model based on machining cost theory which took into detail the shape of the workpieces and the strength reliability of all the parts composing the entire mechanism. Every optimization problem displays a particular set of an independent vector of optimal parameters, showing the impact of each objective function on the configuration of the prosthetic device. The multiobjective optimization showed that the mechanical reliability and the production cost included in any combination of the simultaneous optimization enabled the achievement of the same optimum variables design, though with some exceptions. With the inclusion of the labor charges, the depreciation rate of the equipment, and production assets in the mathematical’s manufacturing cost model, the optimal manufacturing cost generated from the numerical simulation was 501.0021 USD. Therefore, the global manufacturing cost and the mechanical strength reliability of the whole prosthesis mechanism have a real impact on the customization of the structure, due to the stochastic nature of the trajectory of the cutting tools during the manufacturing processes.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3