Embedded System Based on an ARM Microcontroller to Analyze Heart Rate Variability in Real Time Using Wavelets

Author:

Rodriguez Victor H.1ORCID,Medrano Carlos12ORCID,Plaza Inmaculada12ORCID

Affiliation:

1. EduQTech, E.U. Politecnica, Universidad de Zaragoza, c/Atarazana 2, 44003 Teruel, Spain

2. IIS Aragón, Universidad de Zaragoza, Zaragoza, Spain

Abstract

The analyses of electrocardiogram (ECG) and heart rate variability (HRV) are of primordial interest for cardiovascular diseases. The algorithm used for the detection of the QRS complex is the basis for HRV analysis and HRV quality will depend strongly on it. The aim of this paper is to implement HRV analysis in real time on an ARM microcontroller (MCU). Thus, there is no need to send raw data to a cloud server for real time HRV monitoring and, consequently, the communication requirements and the power consumption of the local sensor node would be far lower. The system would facilitate the integration into edge computing, for instance, in small local networks, such as hospitals. A QRS detector based on wavelets is proposed, which is able to autonomously select the coefficients the QRS complex will be detected with. To validate it, the MITBIH and NSRDB databases were used. This detector was implemented in real time using an MCU. Subsequently HRV analysis was implemented in the time, frequency, and nonlinear domains. When evaluating the QRS detector with the MITBIH database, 99.61% positive prediction (PP), 99.3% sensitivity (SE), and a prediction error rate (DER) of 1.12% were obtained. For the NSRDB database the results were a PP of 99.95%, an SE of 99.98%, and a DER of 0.0006%. The execution of the QRS detector in the MCU took 52 milliseconds. On the other hand, the time required to calculate the HRV depends on the data size, but it took only a few seconds to analyze several thousands of interbeat intervals. The results obtained for the detector were superior to 99%, so it is expected that the HRV is reliable. It has also been shown that the detection of QRS complex can be done in real time using advanced processing techniques such as wavelets.

Funder

CONACYT-Gobierno del Estado de Durango, México

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. HEART ATTACK DETECTION BY HEART RATE MONITORING USING IOT TECHNIQUES;ShodhKosh: Journal of Visual and Performing Arts;2024-01-31

2. An Embedded System Based on Raspberry Pi for Effective Electrocardiogram Monitoring;Applied Sciences;2023-07-17

3. An atrial fibrillation detection system based on machine learning algorithm with mix-domain features and hardware acceleration *;2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC);2021-11-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3