Affiliation:
1. Department of Information Engineering and Computer Science, Feng Chia University, Taichung, Taiwan
Abstract
Existing intelligent transport systems (ITS) do not fully consider and resolve accuracy, instantaneity, and compatibility challenges while resolving traffic congestion in Internet of Vehicles (IoV) environments. This paper proposes a traffic congestion monitoring system, which includes data collection, segmented structure establishment, traffic-flow modelling, local segment traffic congestion prediction, and origin-destination traffic congestion service for drivers. Macroscopic model-based traffic-flow factors were formalized on the basis of the analysis results. Fuzzy rules-based local segment traffic congestion prediction was performed to determine the traffic congestion state. To enhance prediction efficiency, this paper presents a verification process for minimizing false predictions which is based on the Rankine-Hugoniot condition and an origin-destination traffic congestion service is also provided. To verify the feasibility of the proposed system, a prototype was implemented. The experimental results demonstrate that the proposed scheme can effectively monitor traffic congestion in terms of accuracy and system response time.
Funder
Ministry of Science and Technology of the People’s Republic of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献