Simulation of Threshold UV Exposure Time for Vitamin D Synthesis in South Korea

Author:

Park Sang Seo1,Lee Yun Gon2ORCID,Kim Migyoung2,Kim Jaemin2,Koo Ja-Ho3,Kim Chang Ki4,Um Junshik5,Yoon Jongmin6

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea

2. Department of Atmospheric Sciences, Chungnam National University, Daejeon, Republic of Korea

3. Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea

4. New and Renewable Energy Resource Center, Korea Institute of Energy Research, Daejeon, Republic of Korea

5. Department of Atmospheric Sciences, Pusan National University, Busan, Republic of Korea

6. National Institute of Environmental Research, Incheon, Republic of Korea

Abstract

The threshold exposure time for synthesis of vitamin D was simulated by using a radiative transfer model considering variations in total ozone, cloud, and surface conditions. The prediction of total ozone took the form of an empirical linear regression with the variables of meteorological parameters in the upper troposphere and lower stratosphere and the climatology value of total ozone. Additionally, to consider cloud extinction after the estimation of clear-sky UV radiation using a radiative transfer model simulation, a cloud modification factor was applied. The UV irradiance was estimated at one-hour intervals, and then, to improve the temporal resolution of the exposure time simulation, it was interpolated to a one-minute resolution. Exposure times from the simulation clearly followed seasonal and diurnal cycles. However, upon comparison with observations, biases with large variations were found, and the discrepancy in the exposure time between the observations and simulations was higher in low UV irradiance conditions. The large deviations in the prediction errors for total ozone and the simplified assumption for the cloud modification factor contributed to the large deviations in exposure time differences between the model estimation and observations. To improve the accuracy of the simulated exposure time, improved predictions of total ozone with a more detailed cloud treatment will be essential.

Funder

Korea Meteorological Administration

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3