Renovation and Reuse of Reactive Dyeing Effluent by a Novel Heterogeneous Fenton System Based on Metal Modified PTFE Fibrous Catalyst/H2O2

Author:

Li Bing1,Dong Yongchun12,Ding Zhizhong2,Xu Yiming1,Zou Chi1

Affiliation:

1. Textile Chemistry & Ecology, School of Textiles, Tianjin Polytechnic University, Tianjin 300387, China

2. Key Laboratory of Advanced Textile Composite of Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China

Abstract

Cu-Fe bimetallic grafted polytetrafluoroethylene (PTFE) fiber complexes were prepared and optimized as the novel heterogeneous Fenton catalysts for the degradation of reactive dyes under UV irradiation. Cotton fabrics were dyed with three reactive dyes, namely, Reactive Red 195, Reactive Yellow 145, and Reactive Blue 222, in tap fresh water using exhaustion process. The spent dyeing effluents were then collected and degraded with the optimized Cu-Fe bimetallic grafted PTFE fiber complex/H2O2system. The treated dyeing effluents were characterized and reused for the dyeing of cotton fabrics through the same process. The effect of reuse process number on quality of the dyed cotton fabrics was examined. The results indicated that the Cu-Fe bimetallic modified PTFE fiber complex with a Cu/Fe molar ratio of 2.87 was found to be the most effective fibrous catalyst, which enhanced complete decolorization of the treated dyeing effluents with H2O2in 4 h. However, the TOC removal for the treated dyeing effluents was below 80%. The dyeing quality was not affected for three successive cycles. The increase in residual TOC value influences fourth dyeing cycle. Further TOC reduction of the treated effluents is needed for its repeated reuse in more than three dyeing cycles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3