SCWOMP Recovery Algorithm for 5G MIMO Communication Symbol Detection

Author:

Fu Tao1ORCID,Yu Yanfeng1ORCID,Liu Cheng1ORCID

Affiliation:

1. College of Electronic Engineering, Zhengzhou Railway Vocational & Technical College, Zhengzhou 450000, China

Abstract

In order to solve the problem of small capacity and high energy consumption in China’s 5G communication technology system, the research proposes that based on the segmented weakly orthogonal matching pursuit (SWOMP) algorithm, it is combined with the compressed sensing matching pursuit algorithm to form a segmented backtracking weak selection positive algorithm and Cross Match Tracking (SCWOMP) algorithm. First, the sparseness of MIMO system technology and its transmission structure is analyzed. Then, the new model is built after comparing with other algorithms, and the problem of overestimating the low recovery probability in the calculation process is improved by the backtracking of the algorithm and the improvement of the angle of the atomic column selection, so as to reduce the number of iterations and improve the performance of the algorithm. The results show that, in the performance comparison of different sampling points under different compressed sensing recovery algorithms, the recovery probability of the SCWOMP algorithm is the best, and when the number of sampling points is 80, although the fixed step size of the SCWOMP algorithm is different, there is recovery. The probability has a maximum value, close to 1. Then, the improved compressed sensing recovery algorithm is simulated and analyzed. When the pruning coefficient is 0.5 and the number of sampling points is 80, the reconstruction rate has a maximum value, and when other algorithms reach the maximum reconstruction rate, the number of sampling points (M) is significantly greater than that of the SCWOMP algorithm. An increase in the rate of reduction of the reconstruction probability of the SCWOMP algorithm is significantly lower than that of other algorithms; when sparsity is equal to 70, the reconstruction probability becomes 0, indicating that SCWOMP has a wider reconfigurable range and has a significant performance effect. This shows that the proposed SCWOMP algorithm has the best detection performance for 5G communication symbol detection, which can effectively increase the capacity of the system and better promote technology.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3