Markov chain analysis of weekly rainfall data in determining drought-proneness

Author:

Banik Pabitra1,Mandal Abhyudy1,Rahman M. Sayedur2

Affiliation:

1. Agricultural Science Unit, Indian Statistical Institute, Calcutta 700 035, India

2. Associate Professor, Department of Statistics, Rajshahi University, Bangladesh

Abstract

Markov chain models have been used to evaluate probabilities of getting a sequence of wet and dry weeks during South-West monsoon period over the districts Purulia in West Bengal and Giridih in Bihar state and dry farming tract in the state of Maharashtra of India. An index based on the parameters of this model has been suggested to indicate the extend of drought-proneness of a region. This study will be useful to agricultural planners and irrigation engineers to identifying the areas where agricultural development should be focused as a long term drought mitigation strategy. Also this study will contribute toward a better understanding of the climatology of drought in a major drought-prone region of the world.

Publisher

Hindawi Limited

Subject

Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3