Composite Clustering Sampling Strategy for Multiscale Spectral-Spatial Classification of Hyperspectral Images

Author:

Li Chenming1,Qu Xiaoyu1,Yang Yao1,Yao Dan1,Gao Hongmin1ORCID,Hua Zaijun1

Affiliation:

1. College of Computer and Information, Hohai University, Nanjing 211100, China

Abstract

In recent years, many high-performance spectral-spatial classification methods were proposed in the field of hyperspectral image classification. At present, a great quantity of studies has focused on developing methods to improve classification accuracy. However, some research has shown that the widely adopted pixel-based random sampling strategy is not suitable for spectral-spatial hyperspectral image classification algorithms. Therefore, a composite clustering sampling strategy is proposed, which can greatly reduce the overlap between the training set and the test set, while making sample points in the training set sufficiently representative in the spectral domain. At the same time, in order to solve problems of a three-dimensional Convolutional Neural Network which is commonly used in spectral-spatial hyperspectral image classification methods, such as long training time and large computing resource requirements, a multiscale spectral-spatial hyperspectral image classification model based on a two-dimensional Convolutional Neural Network is proposed, which effectively reduces the training time and computing resource requirements.

Funder

National Science Foundation for Young Scientists of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperspectral Acquisition Technology Based on Compressed Sampling in Spatial Domain;International Journal of Circuits, Systems and Signal Processing;2022-01-12

2. Ensemble Synthetic Oversampling with Manhattan Distance for Unbalanced Hyperspectral Data;Intelligent Data Engineering and Automated Learning – IDEAL 2021;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3