Breast MRI Segmentation and Ki-67 High- and Low-Expression Prediction Algorithm Based on Deep Learning

Author:

Li Yuan-Zhe1ORCID,Huang Yin-Hui2,Su Xian-yan1,Gu Zhen-qi3,Lai Qing-Quan1,Huang Jing1,Li Shu-Ting1,Wang Yi1ORCID

Affiliation:

1. Department of CT/MRI, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China

2. Department of Neurology, Jinjiang Municipal Hospital, Quanzhou 362000, China

3. Galactophore Department, The First School of Clinical Medicine, Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou 310000, China

Abstract

Background and Objective. Breast cancer is a common malignant tumor that seriously threatens the health of women in my country and even around the world. The proliferation marker Ki-67 has been utilized to distinguish luminal B from luminal A tumors and is a reliable indicator of more aggressive breast cancer growth. If a reliable prediction method for breast cancer patients to avoid invasive damage can be found to predict Ki-67 before pathological examination, it will be very beneficial for doctors to formulate later treatment plans and provide more useful treatment options. Methodology. This paper proposes a tumor segmentation and prediction framework based on the combination of improved attention U-Net and SVM. The framework first improves on attention U-Net by introducing coefficients for learning multidimensional attention. Make the attention mechanism more aware of the main situation in the segmentation process. At the same time, the segmented breast MRI results and corresponding labels were input into the SVM classifier to accurately predict the expression of Ki-67. Results. The DSC, PPV, and sensitivity of our combined model are 0.94, 0.93, and 0.94, respectively, with better segmentation performance. And we compare with the segmentation frameworks of other papers and find that our combined model can make accurate segmentation of breast tumors. Conclusion. Our method can adapt to the variability of breast tumors and segment breast tumors accurately and efficiently. In the future, it can be widely used in clinical practice, so as to help the clinic better formulate a reasonable diagnosis and treatment plan for breast cancer patients.

Funder

Deep Red AI platform

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3