An Internet of Things (IoT) Based Image Process Screening to Prevent COVID-19 in Public Gatherings

Author:

Serbaya Suhail H.1ORCID

Affiliation:

1. Department of Industrial Engineering, Faculty of Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Abstract

The global community is now coping with such a significant issue as the Covid-19 virus, public gatherings are experiencing certain restrictions in order to stop the virus from spreading further. The issue takes on a bigger significance during religious pilgrimages such as the Hajj and the Umrah, when tens of thousands, if not hundreds of thousands, of people gather in holy cities to participate in religious rituals. During such a time period, it is quite difficult to single out an infected person from among the big crowd that is there. The current screening approach only includes a single element of identity, which means that there is a possibility that the screening process may fail because there will not be enough identification. The use of thermal imaging provides a higher level of accuracy when compared to more conventional ways of testing for viral infections in the detection of these symptoms in crowded locations. The primary method that is utilised to determine whether or not a person is infected with the virus is an image processing algorithm that is built in MATLAB. The first step in the process of acquiring an image is to divide the video that is being captured into individual frames. Following this step, the frames that have been focussed are processed in a number of ways. The temperature of a person’s body may be estimated by taking a thermal image and then using the RGB separation feature on it. In order to categorise and sort the data, the k-means approach was used as part of the segmentation operation. In addition to eliminating the skin frequency, it also gets rid of the background noise, which often has a higher frequency than the skin frequency. The Viola–Jones technique, which may be used to identify the person’s breathing rate, can be used to locate the end of a person’s nose, specifically the tip of the nose. The Cascaded Adaboost Classifier is an option that may be used to finish the classification process after the operation has been completed. The suggested method has an accuracy rate of 89.23 percent and a simulation period of around 60 seconds, which guarantees the safety of huge groups of people’s public health.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3