ORCLSim: A System Architecture for Studying Bicyclist and Pedestrian Physiological Behavior through Immersive Virtual Environments

Author:

Guo Xiang1ORCID,Angulo Austin1ORCID,Robartes Erin1ORCID,Chen T. Donna1ORCID,Heydarian Arsalan1ORCID

Affiliation:

1. Department of Engineering Systems and Environment, University of Virginia, Charlottesville, VA 22904, USA

Abstract

Injuries and fatalities for vulnerable road users, especially bicyclists and pedestrians, are on the rise. To better inform design for vulnerable road users, we need to evaluate how bicyclist and pedestrian behavior and physiological states change in different roadway design and contextual settings. Previous research highlights the advantages of using immersive virtual environments (IVEs) in conducting bicyclist and pedestrian studies. These environments do not put participants at risk of injury, are low cost compared to on-road or naturalistic studies, and allow researchers to fully control variables of interest. In this paper, we propose a framework, Omni-Reality and Cognition Lab Simulator (ORCLSim), to support human sensing techniques within IVEs to evaluate bicyclist and pedestrian physiological and behavioral changes in different contextual settings. To showcase this framework, we present two case studies, where pilot data from five participants’ physiological and behavioral responses in an IVE setting are collected and analyzed, representing real-world roadway segments and traffic conditions. Results from these case studies indicate that physiological data are sensitive to road environment changes and real-time events in the IVE, especially changes in heart rate and gaze behavior. In addition, our preliminary data indicate participants may respond differently to various roadway settings (e.g., signalized vs. unsignalized intersections). By analyzing these changes, future studies can identify how participants’ stress level and cognitive load are impacted by the surrounding environment. The ORCLSim system architecture is a prototype that can be customized for future studies in understanding users’ behavioral and physiological responses in virtual reality settings.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3