Caption Generation Based on Emotions Using CSPDenseNet and BiLSTM with Self-Attention

Author:

S Kavi Priya1ORCID,K Pon Karthika1ORCID,Kaliappan Jayakumar2ORCID,Selvaraj Senthil Kumaran3ORCID,R Nagalakshmi4,Molla Baye5ORCID

Affiliation:

1. Department of Computer Science and Engineering, Mepco Schlenk Engineering College (Autonomous), Sivakasi 626005, Tamil Nadu, India

2. Department of Analytics, School of Computer Science and Engineering, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India

3. Department of Manufacturing Engineering, School of Mechanical Engineering (SMEC), Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India

4. Department of Computer Science and Engineering, Faculty of Engineering and Technology, Kalinga University, Raipur, Chhattisgarh, India

5. School of Mechanical Engineering, Engineering and Technology College, Dilla University, P.O.Box. 419, Dilla, Ethiopia

Abstract

Automatic image caption generation is an intricate task of describing an image in natural language by gaining insights present in an image. Featuring facial expressions in the conventional image captioning system brings out new prospects to generate pertinent descriptions, revealing the emotional aspects of the image. The proposed work encapsulates the facial emotional features to produce more expressive captions similar to human-annotated ones with the help of Cross Stage Partial Dense Network (CSPDenseNet) and Self-attentive Bidirectional Long Short-Term Memory (BiLSTM) network. The encoding unit captures the facial expressions and dense image features using a Facial Expression Recognition (FER) model and CSPDense neural network, respectively. Further, the word embedding vectors of the ground truth image captions are created and learned using the Word2Vec embedding technique. Then, the extracted image feature vectors and word vectors are fused to form an encoding vector representing the rich image content. The decoding unit employs a self-attention mechanism encompassed with BiLSTM to create more descriptive and relevant captions in natural language. The Flickr11k dataset, a subset of the Flickr30k dataset is used to train, test, and evaluate the present model based on five benchmark image captioning metrics. They are BiLingual Evaluation Understudy (BLEU), Metric for Evaluation of Translation with Explicit Ordering (METEOR), Recall-Oriented Understudy for Gisting Evaluation (ROGUE), Consensus-based Image Description Evaluation (CIDEr), and Semantic Propositional Image Caption Evaluation (SPICE). The experimental analysis indicates that the proposed model enhances the quality of captions with 0.6012(BLEU-1), 0.3992(BLEU-2), 0.2703(BLEU-3), 0.1921(BLEU-4), 0.1932(METEOR), 0.2617(CIDEr), 0.4793(ROUGE-L), and 0.1260(SPICE) scores, respectively, using additive emotional characteristics and behavioral components of the objects present in the image.

Publisher

Hindawi Limited

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Civil and Structural Engineering,Computational Mechanics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3