N1-Methyladenosine-Related lncRNAs Are Potential Biomarkers for Predicting Prognosis and Immune Response in Uterine Corpus Endometrial Carcinoma

Author:

Liu Jinhui1ORCID,Geng Rui2,Zhong Zihang2,Zhang Yixin2,Ni Senmiao2,Liu Wen2,Du Mulong2,Bai Jianling2ORCID

Affiliation:

1. Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 Jiangsu, China

2. Department of Biostatistics, School of Public Heath, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing 211166, China

Abstract

Uterine corpus endometrial carcinoma (UCEC) is a malignant disease that, at present, has no well-characterised prognostic biomarker. In this study, two clusters were identified based on 28 N1-methyladenosine- (m1A-) related long noncoding RNAs (lncRNAs), of which cluster 1 was related to immune pathways according to the results of an enrichment analysis. We further observed better prognosis in patients with higher levels of immune cell infiltration, tumor mutation burden, microsatellite instability, and immune checkpoint gene expression. In addition, through Cox regression analysis and least absolute shrinkage and selection operator regression analysis, 10 m1A-related lncRNAs (mRLs) were employed to build a prognosis model. We found that people in higher risk categories had a poorer survival probability than those in lower risk. Low-risk samples were enriched with immune-related pathways, while the high-risk group was similar to the definition of the “immune desert” phenotype, which was associated with decreased immune infiltration, T cell failure, and decreased tumor mutation burden, while also being insensitive to immunotherapy and chemotherapy. This mRL-based model has the ability to accurately predict the prognosis of UCEC patients, and the mRLs could become promising therapeutic targets in enhancing the response of immunotherapy.

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3