GGA-MLP: A Greedy Genetic Algorithm to Optimize Weights and Biases in Multilayer Perceptron

Author:

Bansal Priti1ORCID,Lamba Rishabh1,Jain Vaibhav1,Jain Tanmay1,Shokeen Sanchit1ORCID,Kumar Sumit2ORCID,Singh Pradeep Kumar3ORCID,Khan Baseem4ORCID

Affiliation:

1. Department of Information Technology, Netaji Subhas University of Technology, Dwarka, New Delhi, India

2. Department of Computer Science and Engineering, Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida, India

3. Department of Computer Science, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India

4. Hawassa University, Hawassa, Ethiopia

Abstract

The task of designing an Artificial Neural Network (ANN) can be thought of as an optimization problem that involves many parameters whose optimal value needs to be computed in order to improve the classification accuracy of an ANN. Two of the major parameters that need to be determined during the design of an ANN are weights and biases. Various gradient-based optimization algorithms have been proposed by researchers in the past to generate an optimal set of weights and biases. However, due to the tendency of gradient-based algorithms to get trapped in local minima, researchers have started exploring metaheuristic algorithms as an alternative to the conventional techniques. In this paper, we propose the GGA-MLP (Greedy Genetic Algorithm-Multilayer Perceptron) approach, a learning algorithm, to generate an optimal set of weights and biases in multilayer perceptron (MLP) using a greedy genetic algorithm. The proposed approach increases the performance of the traditional genetic algorithm (GA) by using a greedy approach to generate the initial population as well as to perform crossover and mutation. To evaluate the performance of GGA-MLP in classifying nonlinear input patterns, we perform experiments on datasets of varying complexities taken from the University of California, Irvine (UCI) repository. The experimental results of GGA-MLP are compared with the existing state-of-the-art techniques in terms of classification accuracy. The results show that the performance of GGA-MLP is better than or comparable to the existing state-of-the-art techniques.

Publisher

Hindawi Limited

Subject

Radiology, Nuclear Medicine and imaging

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3