Experimental Study on the Influence of Hydromechanical Boundary Conditions on Shear-Flow Coupling Characteristics of Granite Joints

Author:

Cao Yangbing12ORCID,Wu Yang1ORCID,Zhang Xiangxiang1,Liu Zhi1ORCID,Gong Weiguo1ORCID,Huang Zhenping1

Affiliation:

1. Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China

2. Key Laboratory of Geohazard Prevention of Hilly Mountains, Ministry of Natural Resources (Fujian Key Laboratory of Geohazard Prevention), Fuzhou 350003, China

Abstract

The instability of jointed rock mass is usually the shear process of the rock mass along discontinuities under the influence of groundwater flow. By conducting laboratory tests and numerical experiments on the shear-flow coupling of rock joints under constant normal stiffness (CNS) and constant normal stress (CNL) boundary conditions, the influence of normal boundary conditions and seepage pressure on the shear mechanical and flow characteristics of joints were investigated. The test results were as follows: The joint shear stiffness, peak, and residual shear strength under the CNS boundary condition were predominantly larger than those under the CNL boundary condition. Overall, these parameters were positively correlated with the initial normal stress σ n 0 . When σ n 0 > 2  MPa, the postpeak shear stress of the CNS boundary condition showed a sharp decrease, whereas that of the CNL boundary condition changed from a slowly decreasing type ( σ n 0 = 4  MPa, 6 MPa) to a sharply decreasing type at σ n 0 = 8  MPa. The peak dilation rate under the CNS boundary condition at all levels of normal stress was lower than that of CNL, and the strain softening in postpeak of the latter was more remarkable. In the process of joint shear, the hydraulic aperture displayed a four-stage variation law of “steady-sudden increase-slow increase-basically stable.” Moreover, the hydraulic aperture under the CNS boundary condition was always lower than that under the CNL boundary condition. The seepage pressure increased from 0.5 MPa to 1.5 MPa, and the average hydraulic aperture in the stable stage under normal stress at all levels increased from 0.146 mm to 0.187 mm. In addition, the average peak shear stress and average shear stiffness decreased by 0.9 MPa and 0.83 GPa/m, respectively. We also established a numerical model of a real rough three-dimensional joint, compiled a calculation program for the shear-flow process of a joint under CNS boundary conditions, and visualized the flow channel inside the joint. The seepage flow bypassed the area where the joints contacted each other, forming obvious flow channels. The flow rate increased at the intersection of the flow channels.

Funder

Geological Research Project of Bureau of Geology and Mineral Exploration and Development Guizhou Province of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experimental study on the nonlinear flow characteristics of fractured granite after high-temperature cycling;Geomechanics and Geophysics for Geo-Energy and Geo-Resources;2023-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3