Predicting Cross-Species Infection of Swine Influenza Virus with Representation Learning of Amino Acid Features

Author:

Kou Zheng1ORCID,Li Junjie1,Fan Xinyue1,Kosari Saeed1,Qiang Xiaoli1ORCID

Affiliation:

1. Institute of Computing Science and Technology, Guangzhou University, Guangzhou 510006, China

Abstract

Swine influenza viruses (SIVs) can unforeseeably cross the species barriers and directly infect humans, which pose huge challenges for public health and trigger pandemic risk at irregular intervals. Computational tools are needed to predict infection phenotype and early pandemic risk of SIVs. For this purpose, we propose a feature representation algorithm to predict cross-species infection of SIVs. We built a high-quality dataset of 1902 viruses. A feature representation learning scheme was applied to learn feature representations from 64 well-trained random forest models with multiple feature descriptors of mutant amino acid in the viral proteins, including compositional information, position-specific information, and physicochemical properties. Class and probabilistic information were integrated into the feature representations, and redundant features were removed by feature space optimization. High performance was achieved using 20 informative features and 22 probabilistic information. The proposed method will facilitate SIV characterization of transmission phenotype.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3