Cavitation Analysis in Centrifugal Pumps Based on Vibration Bispectrum and Transfer Learning

Author:

Hajnayeb Ali1ORCID

Affiliation:

1. Mechanical Engineering Department, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

Detection of cavitation in centrifugal pumps is critical in their condition monitoring. In order to detect cavitation more accurately and confidently, more advanced signal processing techniques are needed. For the classification of a pump conditions based on the outputs of these techniques, advanced machine learning techniques are needed. In this research, an automatic system for cavitation detection is proposed based on machine learning. Bispectral analysis is used for analyzing the vibration signals. The resulting bispectrum images are given to convolutional neural networks (CNNs) as inputs. The CNNs are a pretrained AlexNet and a pretrained GoogleNet, which are used in this application through transfer learning. On the contrary, a laboratory test setup is used for generating controlled cavitation in a centrifugal pump. The suggested algorithm is implemented on the vibration dataset acquired from the laboratory pump test setup. The results show that the cavitation state of the pump can be detected accurately using this system without any need to image processing or feature extraction.

Funder

Shahid Chamran University of Ahvaz

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3