Industry 4.0-Oriented Chipless RFID Backscatter Signal Variable Polarization Amplitude Deep Learning Coding

Author:

Shi Guolong12ORCID,He Yigang1,Gu Lichuan2,Jiao Jun2

Affiliation:

1. School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China

2. School of Information and Computer, Anhui Agricultural University, Hefei, Anhui 230036, China

Abstract

Due to the weak network security protection capabilities of control system network protocols under Industry 4.0, the research on industrial control network intrusion detection is still in its infancy. This article discussed and researched the intrusion prevention technology of industrial control networks based on deep learning. According to the electromagnetic scattering theory, the backscatter signal model of the chipless tag was established as a chipless tag structure. Polarized deep learning coding was used for the label; that was, deep learning coding was performed on the copolarization component and the cross-polarization component at the same time, and a 16-bit deep learning coding bit number was obtained. The wave crest deep learning coding was used for the split ellipse ring patch label, and the 6-bit deep learning coding bit number was obtained. Then, the poles of the scattered signal of the tag were extracted to identify the tag. The variable polarization effect was achieved by adopting the dipole resonant unit with the two ends bent. Aiming at the problem of low detection rate caused by the shallow selection of feature classification of intrusion prevention systems, an industrial control network intrusion prevention model based on self-deep learning encoders and extreme learning machines was proposed to extract features from industrial control network data through deep learning. For accurate classification, the theoretical judgment was also verified through simulation experiments, and it was proved that the detection rate of the model has also improved. It forms a set of industrial control network intrusion prevention system with complete functions and superior performance with data acquisition module, system log module, defense response module, central control module, etc. The matrix beam algorithm was used to extract the poles and residues for the late response, and the extracted poles and residues were used to reconstruct the signal. The reconstructed signal was compared with the scattered signal to verify the correctness of the pole extraction. Finally, the tags were processed and tested in the actual environment, and the measured results were consistent with the theoretical analysis and simulation results.

Funder

Provincial Science and Technology Major Special Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing Cloud Computing Security through Deep Learning and Attention Mechanism Intrusion Detection Systems;2023 4th International Conference on Intelligent Technologies (CONIT);2024-06-21

2. Application of deep neural networks for inferring pressure in polymeric acoustic transponders/sensors;Machine Learning with Applications;2023-09

3. Development of Product Quality with Enhanced Productivity in Industry 4.0 with AI Driven Automation and Robotic Technology;2023 Second International Conference on Augmented Intelligence and Sustainable Systems (ICAISS);2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3