Oceanic Radionuclide Dispersion Method Investigation for Nonfixed Source from Marine Reactor Accident

Author:

Guo Dingqing12ORCID,Wang Jinkai1ORCID,Ge Daochuan3ORCID,Chen Chunhua3ORCID,Chen Liwei4ORCID

Affiliation:

1. State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518172, China

2. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

3. Institute of Nuclear Energy Safety Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China

4. School of Computer Science and Technology, Hefei Normal University, Hefei, Anhui 230601, China

Abstract

Radionuclide dispersion model, which is of critical importance to the emergency response of severe nuclear accident, is used to estimate the consequences arising from accidental or routine releases and to predict areas of high contamination. It is difficult to evaluate the radioactive consequence accurately and rapidly for the accidental release of radionuclides from marine reactor because of the complex mobility feature in the sea. Based on CFD method, a finite-volume, three-dimensional regional oceanic dispersion model was developed in this paper to simulate the dispersion of radionuclides originating from marine reactor. The simulated dose variation of 137Cs presented good agreement with the monitoring data of marine radioactive pollution caused by Fukushima Dai-ichi nuclear accident, which demonstrated the validity of the method. A severe accident scenario of marine reactor was simulated and analyzed, which indicates that the regional oceanic dispersion model can provide dose assessment for nuclear emergency response.

Funder

Chinese Academy of Sciences’ Defense Science and Technology Innovation Fund

Publisher

Hindawi Limited

Subject

Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3