Gait-Based Diplegia Classification Using LSMT Networks

Author:

Ferrari Alberto1,Bergamini Luca2ORCID,Guerzoni Giorgio2,Calderara Simone2,Bicocchi Nicola2ORCID,Vitetta Giorgio2,Borghi Corrado3,Neviani Rita3,Ferrari Adriano34ORCID

Affiliation:

1. Department of Electrical, Electronic and Information Engineering Guglielmo Marconi, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy

2. Department of Engineering Enzo Ferrari, University of Modena and Reggio Emilia, Via Vivarelli 10, 41125 Modena, Italy

3. LAMBDA -Laboratorio Analisi del Movimento del Bambino Dis-Abile, Azienda Ospedaliera Arcispedale S. Maria Nuova and University of Modena and Reggio Emilia, Reggio Emilia, Italy

4. Department of Neuroscience, University of Modena and Reggio Emilia, Reggio Emilia, Italy

Abstract

Diplegia is a specific subcategory of the wide spectrum of motion disorders gathered under the name of cerebral palsy. Recent works proposed to use gait analysis for diplegia classification paving the way for automated analysis. A clinically established gait-based classification system divides diplegic patients into 4 main forms, each one associated with a peculiar walking pattern. In this work, we apply two different deep learning techniques, namely, multilayer perceptron and recurrent neural networks, to automatically classify children into the 4 clinical forms. For the analysis, we used a dataset comprising gait data of 174 patients collected by means of an optoelectronic system. The measurements describing walking patterns have been processed to extract 27 angular parameters and then used to train both kinds of neural networks. Classification results are comparable with those provided by experts in 3 out of 4 forms.

Funder

University of Modena and Reggio Emilia

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3