Cyclic Behavior of Steel Beam to CFT Column Connections with Gusset Plates

Author:

Wang Peng1ORCID,Wang Zhan12ORCID,Pan Jianrong12ORCID,Zheng Yanjun1ORCID,Liu Deming1ORCID

Affiliation:

1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China

2. State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510641, China

Abstract

Beam-brace-CFT (concrete-filled tubular) column connections provide excellent performance in resisting seismic loads in high-risk areas. However, the load transmission mechanism of this type of connection still remains unclear, and there is a lack of study on it. Therefore, in this paper, the mechanical behavior of beam-brace-CFT column (BBC) connections penetrated by gusset plates was evaluated through experiments and finite element analysis to resolve this issue. The failure modes, strength, stiffness, ductility, and energy dissipation of this type of connection were studied. Experiment results indicated that the gusset plates in BBC (beam-brace-CFT) connections could effectively move the plastic hinge on beam away from the column face, reduce the strain concentration between the beam end and column face, and notably improve the hysteretic behavior; the plastic rotation was able to achieve at least 4% story drift angle before 20% strength degradation. Numerical studies were carried out and validated by experiment results, and then the influence of the weld length and strengthening methods were investigated; some improvement of design suggestions was proposed.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3