Multidisciplinary Design Optimization of Crankshaft Structure Based on Cooptimization and Multi-Island Genetic Algorithm

Author:

Liu Jian1,Yu Gaoyuan1ORCID,Li Yao1,Wang Hongmin1,Xiao Wensheng1

Affiliation:

1. Research Center for Marine Oil-Gas Equipment and Security Technology, China University of Petroleum (East China), Qingdao 266580, China

Abstract

The feasibility design method with multidisciplinary and multiobjective optimization is applied in the research of lightweight design and NVH performances of crankshaft in high-power marine reciprocating compressor. Opt-LHD is explored to obtain the experimental scheme and perform data sampling. The elliptical basis function neural network (EBFNN) model considering modal frequency, static strength, torsional vibration angular displacement, and lightweight design of crankshaft is built. Deterministic optimization and reliability optimization for lightweight design of crankshaft are operated separately. Multi-island genetic algorithm (MIGA) combined with multidisciplinary cooptimization method is used to carry out the multiobjective optimization of crankshaft structure. Pareto optimal set is obtained. Optimization results demonstrate that the reliability optimization which considers the uncertainties of production process can ensure product stability compared with deterministic optimization. The coupling and decoupling of structure mechanical properties, NVH, and lightweight design are considered during the multiobjective optimization of crankshaft structure. Designers can choose the optimization results according to their demands, which means the production development cycle and the costs can be significantly reduced.

Funder

Ministry of Education (Southwest Petroleum University)

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3