Estimation of Potential Evapotranspiration across Sri Lanka Using a Distributed Dual-Source Evapotranspiration Model under Data Scarcity

Author:

Senatilleke Udara1,Abeysiriwardana Himasha1ORCID,Makubura Randika K.1,Anwar Faisal2ORCID,Rathnayake Upaka1ORCID

Affiliation:

1. Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

2. Department of Civil Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia

Abstract

Evapotranspiration estimations are not common in developing countries though most of them have water scarcities for agricultural purposes. Therefore, it is essential to estimate the rates of evapotranspiration based on the available climatic parameters. Proper estimations of evapotranspiration are unavailable to Sri Lanka, even though the country has a significant agricultural contribution to its economy. Therefore, the Shuttleworth–Wallace (S-W) model, a process-based two-source potential evapotranspiration (PET) model, is implemented to simulate the spatiotemporal distribution of PET, evaporation from soil (ETs), and transpiration from vegetation canopy (ETc) across the total landmass of Sri Lanka. The country was divided into a grid with 6 k m × 6 k m cells. The meteorological data, including rainfall, temperature, relative humidity, wind speed, net solar radiation, and pan evaporation, for 14 meteorological stations were used in this analysis. They were interpolated using Inverse Distance Weighting (IDW), Universal kriging, and Thiessen polygon methods as appropriate so that the generated thematic layers were fairly closer to reality. Normalized Difference Vegetation Index (NDVI) and soil moisture data were retrieved from publicly available online domains, while the threshold values of vegetation parameters were taken from the literature. Notwithstanding many approximations and uncertainties associated with the input data, the implemented model displayed an adequate ability to capture the spatiotemporal distribution of PET and its components. A comparison between predicted PET and recorded pan evaporations resulted in a root mean square error (RMSE) of 0.75 mm/day. The model showed high sensitivity to Leaf Area Index (LAI). The model revealed that both spatial and temporal distribution of PET is highly correlated with the incoming solar radiation fluxes and affected by the rainfall seasons and cultivation patterns. The model predicted PET values accounted for 80–90% and 40–60% loss of annual mean rainfall, respectively, in the drier and wetter parts of the country. The model predicted a 0.65 ratio of annual transpiration to annual evapotranspiration.

Funder

SLIIT Research

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3