Sulfur-Rich N-Doped Co9S8 Catalyst for Highly Efficient and Durable Overall Water Electrolysis Application

Author:

Ahmed Abu Talha Aqueel1ORCID,Han Jonghoon1,Shin Giho1,Park Sunjung1,Yeon Seungun1,Park Youngsin2ORCID,Kim Hyungsang1ORCID,Im Hyunsik1ORCID

Affiliation:

1. Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea

2. Department of Chemistry, College of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

Abstract

Facile template–free controllable growth of freestanding polyhedron–like CoS onto microporous Ni foam with three-dimensional architecture via a mild hydrothermal technique is reported. The as-obtained CoS catalyst phase was first tailored to N-Co9S8 (nitrogen doped Co9S8), and its inherent reaction kinetics and conductivity were then enhanced through sulfur incorporation via a hydrothermal process. The electrochemical performance of the pristine CoS and a sulfur-enriched N-Co9S8 (S, N-Co9S8) electrode in alkaline 1.0 M KOH was examined. The optimized polyhedral S, N-Co9S8 structured catalyst exhibits significantly enhanced electrocatalytic activity for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). As a result, low overpotentials of 244 and −92 mV is required to achieve the current density of 10 mA cm−2 for the OER and HER, respectively. Furthermore, when the polyhedral S, N-Co9S8 catalyst was employed as a bifunctional catalyst in a two-electrode electrolyzer cell exhibiting a cell voltage of 1.549 V at 10 mA cm−2 and demonstrates excellent long-term (50 hrs.) chronopotentiometric electrolysis at various current rate, reveals excellent bifunctional OER and HER activities at different applied current densities. The superior OER and HER activities of the S, N-Co9S8 catalyst is result of the improved electronic conductivity and enhanced intrinsic reaction kinetics, which led to the enhanced electrocatalytically active sites after the incorporation of heteroatoms in the catalyst structure.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3