Novel Use of Scanning Methods to Investigate the Performance of Screw Connections in Timber-Concrete Composite Structures

Author:

Mohd Snin Mohd Amirul B.1ORCID,Kassem Moustafa Moufid1ORCID

Affiliation:

1. School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia

Abstract

This paper investigates the shear force capacity, stiffness, and effective length of the connection screws in timber-concrete composite structures. Ten samples (six hardwood and four softwood) were fabricated with the connection screws installed at different angles through the interface. The shear force capacities and the global stiffness characteristics of the connections were determined directly from double shear tests. The local characteristics of the screw connections were investigated by scanning the final residual screw shapes at the end of the tests for softwood specimens. Using the 2D digital scans of the screws, the screw curvatures were determined. From the curvatures, the local distribution of moment along the screw embedded within the concrete at the conclusion of the test was estimated. The distance of the plastic hinge in the screw within the concrete from the interface between the concrete and timber (the effective length) was obtained from the maximum bending moment location calculated via this image scanning method. Empirical equations of effective screw length were developed from the test data and applied in a shear force capacity model for softwood. These new equations of effective length of inclined screws in connections predicted the shear force capacity of the connection better on the softwood specimens. In hardwood specimens, the screw failed in snapping. An equation of shear force capacity was developed based on the influence of the inclination angle of the screw with the reduction factors and can predict the shear capacity of the connection in hardwood specimens.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3