Affiliation:
1. College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
Abstract
Sparse signal reconstruction, as the main link of compressive sensing (CS) theory, has attracted extensive attention in recent years. The essence of sparse signal reconstruction is how to recover the original signal accurately and effectively from an underdetermined linear system equation (ULSE). For this problem, we propose a new algorithm called regularization reweighted smoothed L0 norm minimization algorithm, which is simply called RRSL0 algorithm. Three innovations are made under the framework of this method: (1) a new smoothed function called compound inverse proportional function (CIPF) is proposed; (2) a new reweighted function is proposed; and (3) a mixed conjugate gradient (MCG) method is proposed. In this algorithm, the reweighted function and the new smoothed function are combined as the sparsity promoting objective, and the constraint condition y-Φx22 is taken as a deviation term. Both of them constitute an unconstrained optimization problem under the Tikhonov regularization criterion and the MCG method constructed is used to optimize the problem and realize high-precision reconstruction of sparse signals under noise conditions. Sparse signal recovery experiments on both the simulated and real data show the proposed RRSL0 algorithm performs better than other popular approaches and achieves state-of-the-art performances in signal and image processing.
Funder
National Key Laboratory of Communication Anti-jamming Technology
Subject
General Engineering,General Mathematics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献