Development of New Carbon-Based Electrode Material from Oil Palm Waste-Derived Reduced Graphene Oxide and Its Capacitive Performance Evaluation

Author:

Nasir Salisu123ORCID,Hussein Mohd Zobir1ORCID,Zainal Zulkarnain3ORCID,Yusof Nor Azah3ORCID

Affiliation:

1. Materials Synthesis and Characterisation Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

2. Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria

3. Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia

Abstract

This paper is an expansion of our previous work on the synthesis of graphene oxides and reduced graphene oxides from different kinds of oil palm waste-based feedstocks, namely, OPL (oil palm leaf), PKS (palm kernel shell), and EFB (empty fruit bunch). Here, the electrochemical measurements of the resulting reduced graphene oxides derived via mild-temperature annealing reduction of the graphene oxides were accomplished using cyclic voltammetry and galvanostatic charge/discharge processes. The findings put forward their promising features for supercapacitor applications. For instance, the reduced graphene oxide derived using EFB precursor (rGOEFB) which has a BET surface area of 117 m2 g-1 exhibits a specific capacitance of 688 F g−1 at an applied current density of 0.8 A g-1. This is higher than that observed for reduced graphene oxides derived from oil palm leaf (rGOOPL), palm kernel shell (rGOPKS), and the commercially acquired graphite (rGOCG), which possessed specific capacitance values of 632, 424, and 220 F g−1, respectively. It can be deduced that the specific capacitance of the reduced graphene oxide samples increases in the following order: (rGOCG) < (rGOPKS) < (rGOOPL) < (rGOEFB). In summary, these new classes of carbon-based nanomaterials could be applied as efficient electrode materials for supercapacitor application with potential good performance. With this novel green and sustainable approach, various carbon-based nanomaterials can be fabricated for a broad range of multifunctional applications.

Funder

Ministry of Higher Education, Malaysia

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3