Effect of Low-Frequency Vibration on Muscle Response under Different Neurointact Conditions

Author:

Zhang Chaofei1ORCID,Wang Wenjun1ORCID,Anderson Dennis2,Guan Sishu3,Li Guofa4ORCID,Xiang Hongyi3,Zhao Hui3ORCID,Cheng Bo1

Affiliation:

1. State Key Laboratory of Automotive Safety and Energy, Department of Automotive Engineering, Tsinghua University, Beijing 100084, China

2. Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA

3. Chongqing Key Laboratory of Vehicle/Biological Crash Security, Department 4th, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400042, China

4. Institute of Human Factors and Ergonomics, College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, China

Abstract

Stretch reflex is an important factor that influences the biomechanical response of the human body under whole-body vibration. However, there is a lack of quantitative evaluation at lower frequencies. Thus, the aim of this study was to investigate the effects of vibration on the stretch reflex and, in particular, to explore the quantitative relationship between dynamic muscle responses and low-frequency vibrations. The gastrocnemius muscle of 45 Sprague-Dawley rats was dissected. Sinusoidal vibrations of five discrete frequencies (2~16 Hz) with peak-to-peak amplitudes of 1 mm were applied to the gastrocnemius muscles with 2 mm or 3 mm prelengthening. Variables including dynamic muscle force, vibration acceleration, and displacement were recorded in two conditions, with and without the stretch reflex. Results showed that the dynamic muscle forces decreased by 20% on average for the 2 mm prelengthening group after the stretch reflex was blocked and by 24% for the 3 mm prelengthening group. Statistical analysis indicated that the amplitude of dynamic muscle force in the “with stretch reflex” condition was significantly larger than that in the “without stretch reflex” condition (p<0.001). The tension-length curve was found to be a nonlinear hysteresis loop that changed with frequency. The phase difference between the dynamic muscle force and the length change was affected significantly by vibration frequency (p<0.01), and the minimum frequency was 4–8 Hz. Experimental results of this study could benefit musculoskeletal model by providing a theoretical support to build a stretch reflex model for low-frequency vibration.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3