Two-Layer Coordinated Energy Management Method in the Smart Distribution Network including Multi-Microgrid Based on the Hybrid Flexible and Securable Operation Strategy

Author:

Sabzalian Mohammad Hosein1ORCID,Pirouzi Sasan2ORCID,Aredes Mauricio1ORCID,Wanderley Franca Bruno3ORCID,Carolina Cunha Ana1ORCID

Affiliation:

1. Laboratory of Power Electronics and Medium Voltage Applications (LEMT), Alberto Luiz Coimbra Institute for Graduate Studies and Research in Engineering (COPPE), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-594, Brazil

2. Power System Group, Semirom Branch, Islamic Azad University, Semirom, Iran

3. Electrical Engineering Department, Fluminense Federal University, Niterói 24210-240, Brazil

Abstract

With the advent of smart grid theory, distribution networks can include different microgrids (MGs). Therefore, to achieve the desired technical and economic objectives in these networks, there is a need for bilateral coordination between their operators. In the following, by defining an energy management problem for them, it is predicted that the mentioned goals can be achieved. Therefore, this paper presents the hybrid flexible-securable operation (HFSO) of a smart distribution network (SDN) with grid-connected multi-microgrids using a two-layer coordinated energy management strategy. In the first layer, the microgrid (MG) operator is coordinated with sources, storages, and demand response operators. This layer models the HFSO method in the grid-connected MGs, which is based on minimizing the difference between the sum of operating cost of nonrenewable distributed generations and cost of energy received from the SDN, and the sum of flexibility and security benefits. It is constrained to AC optimal power flow, flexibility and voltage security constraints, operation model of sources and storages, and demand response. The second layer concerns coordination between the MG operators and the SDN operator. Its formulation is the same as that of the first layer, except that the HFSO model is used in the SDN according to MGs power daily data obtained from the first layer problem. The strategy converts the mixed-integer nonlinear programming to linear one to obtain the optimal solution with low calculation time and error. Moreover, stochastic programming models the uncertainties of load, energy price, and renewable power. Eventually, numerical results confirm the capability of the scheme to improve technical and economic indices simultaneously. As a result, by expecting the optimal operation for sources, storage, and responsive loads, it succeeded to enhance energy loss, voltage profile, and voltage security of the mentioned networks by up to 30%, 22%, and 5%, respectively, compared to power flow studies. In addition, there was enhancement in economic and flexibility status of the SDN and MGs.

Funder

CAPES

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3