Affiliation:
1. Mechanical Engineering Department, Ahmadu Bello University, Samaru Zaria 810006, Nigeria
Abstract
This work presents progress towards the development of a small-scale, purely sonar-based navigation device for a robotic fish (~394 mm long). Aperture overloading of small (5 mm diameter) ultrasonic transmitters does not allow them to be used effectively inside water. A test on a 27 mm diameter buzzer piezo plate shows promising performance under water at frequencies from 4.5 kHz to 80 kHz. ANSYS-based simulation was therefore used to find modal frequencies at higher frequencies so as to optimize this encouraging result. The simulation process also discovered several antiresonant frequencies such as 38.5 kHz, 54 kHz, and 57.5 kHz. All frequencies above the 8th harmonic (10,589.02 Hz) are out of phase with the input load except a resonance frequency of 42.5 kHz and an antiresonance frequency of 56.5 kHz. Also, the first harmonic (1,648.73 Hz) is the only frequency that gave a nodal deformation.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献