Study of the Influence of Clay Minerals on the Mechanical and Percolation Properties of Weakly Cemented Rocks

Author:

Guo Shiru1ORCID,Pu Hai12ORCID,Yang Mengsen1,Liu Ding1ORCID,Sha Ziheng1ORCID,Xu Junce1ORCID

Affiliation:

1. State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China

2. College of Mining Engineering and Geology, Xinjiang Institute of Engineering, Urumqi, Xinjiang 830023, China

Abstract

The weakly cemented rock layer is easily damaged under the combined effect of seepage and mining disturbance and creates massive engineering disasters. This paper uses the self-designed weakly cemented remodeling mechanism to prepare weakly cemented rock samples with clay minerals accounting for 20%, 30%, 40%, 50%, and 60% of the total. The MTS816 system, in conjunction with an acoustic emission system and a high-speed camera, completed mechanical and seepage tests on the sample. The results show that when the quantity of clay minerals increases, the uniaxial compressive strength, elastic modulus, and rapid crack propagation stress of the weakly cemented rock samples decrease. Initial stress of crack development increases and then decreases, as well as the sample’s failure mode changes from shear to tensile. The sample’s permeability increases with increasing osmotic and axial pressure differential but decreases with increasing confining pressure under the same amount of clay minerals. The sensitivity of permeability to changes in osmotic pressure differential, axial pressure, and confining pressure increases as the amount of clay minerals increases. The mechanical and seepage characteristics can show significant changes in clay minerals in 20% to 30%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3