Dynamic Capacitated Arc Routing Problem in E-Bike Sharing System: A Monte Carlo Tree Search Approach

Author:

Tan Shiqi1ORCID,Li Zhiheng2,Xie Na3ORCID

Affiliation:

1. Department of Automation, Tsinghua University, Beijing 100084, China

2. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

3. School of Management Science and Engineering, Central University of Finance and Economics, Beijing 100081, China

Abstract

This paper studies a dynamic capacitated arc routing problem for battery replacement in an e-bike sharing system, where workers replace batteries for underpowered e-bikes along street segments dynamically. The objective is to replace as many batteries as possible and minimize pickup failures. The temporal dependency of the routing decisions, the conflict of the workers’ operations, and the stochastic and dynamic nature of user demands all make this a difficult problem. To cope with these difficulties, a “Partition-First, Route-Second” bi-level solution framework is adopted to describe the problem in two different time scales. On the large time scale, a spatiotemporal partitioning method, which divides the road network into nonoverlapping subzones, is proposed to decompose the problem. On the small time scale, this paper models the routing decision process of individual worker as a Markov Decision Process. We adopt a lookahead policy that simulates future information and decisions over some horizons to evaluate the long-term influence of current feasible decisions. A Monte Carlo Tree Search algorithm is also used to improve the simulation efficiency. By performing numerical computation experiments on a test case study and comparing with some benchmarking policies, we demonstrate the effectiveness and efficiency of the suggested method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3