Dynamic Reconfigurable Computing: The Alternative to Homogeneous Multicores under Massive Defect Rates

Author:

Magalhães Pereira Monica1,Carro Luigi1ORCID

Affiliation:

1. Instituto de Informática, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, RS, Brazil

Abstract

The aggressive scaling of CMOS technology has increased the density and allowed the integration of multiple processors into a single chip. Although solutions based on MPSoC architectures can increase application's speed through TLP exploitation, this speedup is still limited to the amount of parallelism available in the application, as demonstrated by Amdahl's Law. Moreover, with the continuous shrinking of device features, very aggressive defect rates are expected for new technologies. Under high defect rates a large amount of processors of the MPSoC will be susceptible to defects and consequently will fail, not only reducing yield but also severely affecting the expected performance. This paper presents a run-time adaptive architecture that allows software execution even under aggressive defect rates. The proposed architecture can accelerate not only highly parallel applications but also sequential ones, and it is a heterogeneous solution to overcome the performance penalty that is imposed to homogeneous MPSoCs under massive defect rates.

Publisher

Hindawi Limited

Subject

Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fault Tolerant Design and Adaptability;Adaptable Embedded Systems;2012-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3