Facile Synthesis and Application of Ag-NPs for Controlling Antibiotic-ResistantPseudomonas spp. and Bacillus spp. in a Poultry Farm Environment

Author:

Rahman Aminur1,Rasid Harunur1,Ali Md. Isahak1,Yeachin Nymul2,Alam Md. Shahin3,Hossain Khandker Saadat2,Kafi Md. Abdul1ORCID

Affiliation:

1. Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh

2. Department of Physics, University of Dhaka, Dhaka 1000, Bangladesh

3. Animal Health Research Division (AHRD), Bangladesh Livestock Research Institute (BLRI), Shavar 1341, Bangladesh

Abstract

This study synthesized silver nanoparticles (Ag-NPs) using silver nitrate (AgNO3) as the ion source and sodium tripolyphosphate (STPP) as reducing as well as capping agents. The synthesized Ag-NPs were confirmed initially using Ag-NPs specific λmax at 410 nm with UV-Vis spectrophotometry and homogenously distributed, 100–300 nm size, and round-shaped particles were realized through atomic force microscopy (AFM) and transmission electron microscopy (TEM) image analysis. The various reaction condition-based studies revealed 0.01 M AgNO3 yields maximum particle after 4 h reduction with 1% STPP. Bacillus spp. (n = 23/90) and Pseudomonas spp. (n = 26/90) were isolated from three different poultry farms for evaluating the antibacterial activity of Ag-NPs. Among the PCR confirmed isolates, 52% (12/23) Bacillus spp. were resistant to ten antibiotics and 65% (17/26) Pseudomonas spp. were resistant to eleven antibiotics. The representative resistant isolates were subjected to antibacterial evaluation of synthesized Ag-NPs following the well diffusion method, revealing the maximum sensitive zone of inhibition 19 ± 0.2 mm against Bacillus spp. and 17 ± 0.38 mm against Pseudomonas spp. The minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) of Ag-NPs were 2.1 μg/ml and 8.4 μg/ml, respectively, for broad-spectrum application. Finally, the biocompatibility was determined by observing the viability of Ag-NP-treated BHK-21 cell through trypan blue-based exclusion assay revealing nonsignificant decreased of cell viability ≤2MIC doses. Thus, the synthesized Ag-NPs were proven as biocompatible and sensitive to both Gram-positive and Gram-negative bacteria of the poultry farm environmental samples.

Funder

Bangladesh Agricultural University Research System

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3