Improvement of q 2 Resolution in Semileptonic Decays Based on Machine Learning

Author:

Ge Panting1ORCID,Huang Xiaotao2ORCID,Saur Miroslav3ORCID,Sun Liang1ORCID

Affiliation:

1. School of Physics and Technology, Wuhan University, Wuhan 430072, China

2. The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China

3. Technische Universität Dortmund, Dortmund 44227, Germany

Abstract

The neutrino closure method is often used to obtain kinematics of semileptonic decays with one unreconstructed particle in hadron collider experiments. The kinematics of decays can be deducted by a twofold ambiguity with a quadratic equation. To resolve the twofold ambiguity, a novel method based on machine learning (ML) is proposed. We study the effect of different sets of features and regressors on the improvement of reconstructed invariant mass squared of ν system ( q 2 ). The result shows that the best performance is obtained by using the flight vector as the features and the multilayer perceptron (MLP) model as the regressor. Compared with the random choice, the MLP model improves the resolution of reconstructed q 2 by ~40%. Furthermore, the possibility of using this method on various semileptonic decays is shown.

Funder

Horizon 2020 Framework Programme

Publisher

Hindawi Limited

Subject

Nuclear and High Energy Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3