Formation of Incrustations during the Cocombustion of Biomass in Fluidised Bed Boilers

Author:

Buryan Petr1ORCID

Affiliation:

1. Department of Gaseous and Solid Fuels and Air Protection, University of Chemistry and Technology Prague, Technická 5, 166 28 Praha 6, Czech Republic

Abstract

In this article, we focus on causes of formation of incrustations in fluidised bed boilers that result from combustion of biomass-containing energy-producing raw materials and can significantly limit the efficiency of the respective power equipment operation. We applied laboratory procedures followed for assessment of characteristic eutectics of mixtures of coal ashes, desulphurisation components (dolomite and limestone), and woodchip ashes. Our analysis proved that combustion of these (or similar) raw materials, accompanied by repeated heating and cooling of combustion and flue gas desulphurisation products, leads to the formation of unfavourable incrustations. These incrustations can grow up to several tens of centimetres in size, thereby significantly restricting the power equipment functionality. They arise due to incrust reheating that results in the formation of eutectics, which have lower melting temperatures than that during their first pass through the combustion process. The same holds for desulphuriation components themselves. Formation of these new eutectics can be attributed both to recycling of substances produced during the first pass through the furnace as well as to mixtures formed both from recycled materials and from components initially combusted in the boiler furnace.

Publisher

Hindawi Limited

Subject

General Chemistry

Reference21 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3