Mathematical Modeling and Finite Element Analysis of Residual Stress (RS) Field after Multipass Ultrasonic Surface Rolling

Author:

Shao Jinggan1ORCID,He Zhanshu2ORCID,Wu Genshang1,Zhang Zhi3,Li Chao3

Affiliation:

1. Henan Key Engineering Laboratory of Building Structure Reinforcement Materials, Henan Jiaoyuan Engineering Technology Group Co., Ltd, Zhengzhou 450005, China

2. Henan Key Engineering Laboratory for Anti-Fatigue Manufacturing Technology, Zhengzhou University, Zhengzhou 450001, China

3. Jinan Sanyue Testing Instrument Co., Ltd, Jinan 250000, China

Abstract

In order to achieve the change rule of the induced residual stress (RS) field after multipass ultrasonic surface rolling (USR), a mathematical model of the induced residual stress (RS) field after multipass ultrasonic surface rolling is first established. Then, the coupling mechanisms of the RS field after dual-pass USR and multipass USR are analyzed, respectively. Subsequently, a finite element (FE) model is established, and the influence of the interval between two adjacent rolling paths LS is investigated. Finally, both the mathematical model and the FE model are experimentally verified. The results show that both the mathematical model and the FE model can predict the RS field after multipass USR. Two adjacent RS fields will couple with each other in their overlapping regions. For a relatively small interval LS, the RS field after multipass USR can be fully coupled, so as to form a uniform compressive RS layer. In this study, when LS = 0.05 mm, the values of the surface compressive RS, the maximum compressive RS, the depth of the maximum compressive RS, and the depth of the compressive RS layer reach 426.71 MPa, 676.54 MPa, 0.05 mm, and 0.54 mm, respectively.

Funder

Science and Technology Department of Henan Province

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3