A New Zero–Inflated Regression Model with Applications to Australian Health Survey and Biochemistry Graduate Students Data

Author:

Tanış CanerORCID,Mansour Mahmoud M.ORCID,Abd Elrazik Enayat M.ORCID,Chesneau ChristopheORCID,Al-Mofleh HazemORCID,Afify Ahmed Z.ORCID

Abstract

In this study, we propose a new zero‐inflated regression model as an alternative to zero‐inflated regression models, such as the zero‐inflated Poisson, zero‐inflated negative binomial, zero‐inflated hurdle‐Poisson, and zero‐inflated hurdle negative binomial models. In this regard, we take benefit of the flexibility of the Poisson–Bilal distribution and some of its notable properties. More concretely, it is employed as the baseline distribution to generate a new regression model called the zero‐inflated Poisson‐Bilal regression model. It is designed to be a good alternative for modeling overdispersed data quite effectively. This aspect is emphasized using two real‐world data sets from the medicine and education fields. Furthermore, these data sets are analyzed to compare the goodness‐of‐fit of the suggested zero‐inflated regression model with some of its direct competitors.

Funder

Ministry of Education – Kingdom of Saudi Arabi

Publisher

Wiley

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3