Development of New Multicomponent Reactions in Eco-Friendly Media-Greener Reaction and Expeditious Synthesis of Novel Bioactive Benzylpyranocoumarins

Author:

Jelali Hamida1,Chakchouk-Mtibaa A.2,Baklouti Lasaad3,Bilel Hallouma1,Bathich Yaser3,Mellouli L.2,Hamdi Naceur13ORCID

Affiliation:

1. Research Laboratory of Environmental Sciences and Technologies (LR16ES09), Higher Institute of Environmental Sciences and Technology, University of Carthage, Hammam-Lif, Tunisia

2. Laboratory of Microorganisms and Biomolecules, Center of Biotechnology of Sfax, Road of Sidi Mansour, Km 6 B.P. 1117, 3018 Sfax, Tunisia

3. Chemistry Department, College of Science and Arts, Qassim University, Al-Rass, Saudi Arabia

Abstract

Multicomponent cyclocondensation of hydrazine derivatives, ethyl acetoacetate, aromatic aldehydes, and 4-hydroxycoumarin has been reported. The optimization details of the developed novel protocol are recorded. The novel procedure features short reaction time, moderate yields, and simple workup. In addition, BMIM[triflate] was chosen as a green solvent. The structures of the obtained benzylpyrazolyl coumarins were determined and confirmed by 1H NMR, 13C NMR, IR, and elemental analysis. The MIC values of benzylpyrazolyl coumarin derivatives were determined by the microbroth dilution method using 96-well plates. However, the derivatives 5a, 5b, 5d, and 5g possess the strongest activities. Compound 5b was the most active derivative against Candida albicans. Moreover, the antioxidant activity determination of these coumarins derivatives 5(ag)–6(ag) were studied with the DPPH and compared with gallic acid (GA)and butylated hydroxytoluene (BHT). Molecular modelling studies using DFT (density functional theory) calculations showed that there two tautomers A and B in which A is more stable than B. The benzylpyrazolyl coumarin derivatives 5e and 6f exhibited the most cytotoxic effect on the promising cytotoxic activity with IC50 values 4.45 μg/mL against MDA-MB-231 and 4.85 μg/mL against MCF7, respectively.

Funder

Qassim University

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3