Feasibility of Water Injection on the Coal Wall of Loose Thick Coal Seam to Prevent Rib Spalling and Its Optimal Moisture Content

Author:

Sun Jian1ORCID,Li Bin1,Zhang Ruofei1,Huang Zhou1

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines, School of Mining Engineering, Anhui University of Science and Technology, Huainan 232001, China

Abstract

Rib spalling of loose thick coal wall seriously restricts the high yield, high efficiency of coal mine, affecting the safety production of coal mine. Based on the engineering background of water injection to control rib spalling of loose thick coal seam in the Luling Coal Mine of the Huaibei Mining Group, the mineral composition and microscopic morphology of III811 loose thick coal seam in Luling Coal Mine were analyzed by X-ray diffraction and scanning electron microscope. Through uniaxial compressive strength tests of coal samples with different moisture content, the relationship between uniaxial compressive strength, peak strain and moisture content, and their failure characteristics was studied. The results showed that the natural moisture content of III811 coal seam in Luling coal mine is low, and it contains a large amount of kaolinite (75.2%) belonging to clay mineral which is easy to absorb water and then expand, fully bond loose coal body and fill cracks to improve the integrity of coal body. These two factors provide feasibility for injecting water in workface to prevent rib spalling. The compressive strength of coal samples decreased slowly with the raise of moisture content, while the peak strain increased first and then decreased. The peak strain was the largest when the water content was 6.0%. The failure degree of coal samples intensifies with the increase of water content, and the failure form changes from tensile failure at low water content to shear failure at high water content. Considering the relationship between compressive strength, peak strain, and moisture content of coal samples, the optimal moisture content of III811 workface in loose thick coal seam is determined to be 4.5% ~6%.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Reference20 articles.

1. Mechanism of the rib spalling and the controlling in the very soft coal seam;W. Jiachen;Journal of China Coal Society,2007

2. Mechanism of disaster due to rib spalling at fully-mechanized top coal caving face in soft steeply dip-ping seam;W. Yongping;Journal of China Coal Society,2016

3. Study on an improved real-time monitoring and fusion prewarning method for water inrush in tunnels

4. Productivity analysis of fractured wells in reservoir of hydrogen and carbon based on dual-porosity medium model

5. Coal wall stability of fully mechanized working face with great mining height in “Three soft” coal seam and its control technology;T. Yuan Yong;Journal of Mining & Safety Engineering,2012

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3