Performance Analysis of a Linear Gaussian- and tanh-Apodized FBG and Dispersion Compensating Fiber Design for Chromatic Dispersion Compensation in Long-haul Optical Communication Networks

Author:

Nsengiyumva Isidore1ORCID,Mwangi Elijah2,Kamucha George2ORCID

Affiliation:

1. Department of Electrical Engineering, Pan African University, Yaoundé, Cameroon

2. Faculty of Engineering, University of Nairobi, Nairobi, Kenya

Abstract

This paper investigates a novel compensation technique of dispersion effect mitigation using a combination of three- and four-stage-apodized fiber Bragg gratings (FBG) and dispersion compensating fiber (DCF) designs. Two designs using three-stage and four-stage FBG and DCF in combination have been proposed and compared for their performance in mitigating chromatic dispersion effects at 100 km SMF. The performance of each design has been evaluated using Q-factor results using linear Gaussian- and tanh-apodized fiber Bragg gratings. Each profile manifested different Q-factor results over a range of 5 dBm, 7.5 dBm, and 10 dBm of CW laser power over FBG grating lengths from 4 mm to 8 mm. The results obtained using the three-stage and four-stage FBG and DCF designs showed that an apodization profile using a tanh function can be used successfully with FBG lengths from 4 mm to 8 mm, regardless of the CW launched power. In contrast, the results using a Gaussian apodization profile for three- and four-stage FBG and DCF designs are applicable to FBG lengths from 5 mm to 8 mm. Designs using three-stage FBG and DCF generated higher Q-factor results than designs using only four-stage FBG and DCF, regardless of the launched power. The highest Q-factor of 18.58 was obtained for three-stage tanh-apodized FBG and DCF used in combination for an FBG length of 6 mm. The highest result obtained for a three-stage Gaussian-apodized FBG and DCF design was a Q factor of 17.13 using an FBG length of 8 mm. The proposed method was also compared to current similar works and can be successfully implemented in long-haul optical communication.

Funder

Pan African University Scholarship Programme

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Reference30 articles.

1. Performance comparison of DCF and FBG as dispersion compensation techniques at 100 Gbps over 120 km using SMF;A. Sharma,2019

2. Short-pulsed Raman fiber laser and its dynamics;J. Liu;Science China Physics, Mechanics & Astronomy,2021

3. Long-distance optical communication network with linear chirped fiber Bragg grating;R. Gupta,2020

4. Ultra-wide range in-service chromatic dispersion measurement using coherent detection and digital signal processing;J. Wang

5. Performance Signature of Optical Fiber Communications Dispersion Compensation Techniques for the Control of Dispersion Management

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3