Dynamics of a Breast Cancer Model for Neutropenia Case due to Chemotherapy Effects

Author:

Fathoni M. Ivan Ariful12ORCID,Adi-Kusumo Fajar1ORCID,Gunardi Gunardi1,Hutajulu Susanna Hilda3ORCID

Affiliation:

1. Department of Mathematics, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta, Indonesia

2. Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Nahdlatul Ulama Sunan Giri, Bojonegoro, Indonesia

3. Department of Internal Medicine, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada, Dr. Sardjito General Hospital, Yogyakarta, Indonesia

Abstract

Breast cancer is a type of carcinoma with a high prevalence. The treatment of breast cancer through chemotherapy can cause a risk to healthy cells throughout the body. The neutrophil is one of the cells that is influenced by chemotherapy drugs. Chemotherapy-induced neutropenia is one of the most common toxic effects experienced by patients and often threatens chemotherapy to use efficiency. In this paper, we introduce an interaction model between blood components, i.e., neutrophil, lymphocytes, and albumin, with chemotherapy drugs. The model is important to understand the neutropenia effect due to chemotherapy in mathematical perspective and to calculate breast cancer patients’ survival level. Our model is a four-dimensional system of the first-order ODE with 13-dimensional parameter space. We focus our study for understanding the steady-state conditions and the bifurcations when the parameter values are varied. Here, we also study the role of albumin for reducing the neutropenia effects for breast cancer patients mathematically, where the results can be used as an alternative solution for treating neutropenia in a breast cancer case.

Funder

Penelitian Dasar Unggulan Perguruan Tinggi

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3