An Optimization Algorithm with Novel RFA-PSO Cooperative Evolution: Applications to Parameter Decision of a Snake Robot

Author:

Gao Qin12ORCID,Wang Zhelong12ORCID,Li Hongyi2

Affiliation:

1. School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

2. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110000, China

Abstract

The success to design a hybrid optimization algorithm depends on how to make full use of the effect of exploration and exploitation carried by agents. To improve the exploration and exploitation property of the agents, we present a hybrid optimization algorithm with both local and global search capabilities by combining the global search property of rain forest algorithm (RFA) and the rapid convergence of PSO. Originally two kinds of agents, RFAAs and PSOAs, are introduced to carry out exploration and exploitation, respectively. In order to improve population diversification, uniform distribution and adaptive range division are carried out by RFAAs in flexible scale during the iteration. A further improvement has been provided to enhance the convergence rate and processing speed by combining PSO algorithm with potential guides found by both RFAAs and PSOAs. Since several contingent local minima conditions may happen to PSO, special agent transformation is suggested to provide information exchanging and cooperative coevolution between RFAAs and PSOAs. Effectiveness and efficiency of the proposed algorithm are compared with several algorithms in the various benchmark function problems. Finally, engineering design optimization problems taken from the gait control of a snake-like robot are implemented successfully by the proposed RFA-PSO.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Analysis of Bionic Robot Fish Based on MFC Materials;Mathematical Problems in Engineering;2019-06-04

2. CPG-Inspired Locomotion Control for a Snake Robot Basing on Nonlinear Oscillators;Journal of Intelligent & Robotic Systems;2016-04-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3